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Abstract Finite thermostats are studied in the context of nonequilibrium statistical mechan-
ics. Entropy production rate has been identified with the mechanical quantity expressed by
the phase space contraction rate and the currents have been linked to its derivatives with
respect to the parameters measuring the forcing intensities. In some instances Green–Kubo
formulae, hence Onsager reciprocity, have been related to the fluctuation theorem. However,
mainly when dissipation takes place at the boundary (as in gases or liquids in contact with
thermostats), phase space contraction may be independent on some of the forcing parame-
ters or, even in absence of forcing, phase space contraction may not vanish: then the relation
with the fluctuation theorem does not seem to apply. On the other hand phase space contrac-
tion can be altered by changing the metric on phase space: here this ambiguity is discussed
and employed to show that the relation between the fluctuation theorem and Green–Kubo
formulae can be extended and is, by far, more general.

Keywords Nonequilibrium statistical mechanics · Chaotic hypothesis · Fluctuation
theorem · Entropy · Large deviations · Thermostats

I am honored to be given this occasion to thank Jürgen Frölich and Tom Spencer for the
time they spent discussing with me and communicating their insights, projects and ideas. In
particular I have drawn inspiration from the one among the two (JF) with whom I have been
in closer contact particularly at the time when he worked at IHES: his strong criticism of
any “mathematical deviations” from physical problems has been always extremely effective
on my work.

1 Thermostats

A mechanical interpretation of the entropy production rate in nonequilibrium systems in-
teracting with thermostats and possibly subject to external non conservative (“stirring”)

G. Gallavotti (�)
Dipartimento di Fisica and INFN, Università di Roma La Sapienza, P. A. Moro 2, 00185, Rome, Italy
e-mail: giovanni.gallavotti@roma1.infn.it

mailto:giovanni.gallavotti@roma1.infn.it


1122 G. Gallavotti

Fig. 1 The 1 + n boxes C0, T1, . . . , Tn contain N0,N1, . . . ,Nn particles, of mass m = 1, whose positions
and velocities are denoted X0,X1, . . . ,Xn , and Ẋ0, Ẋ1, . . . , Ẋn respectively. The E denote external, non
conservative, forces and the multipliers αj model the thermostats and are so defined that the kinetic en-

ergies Kj = 1
2 Ẋ2

j
are exactly constants of motion with values Kj = 3

2 Nj kBTj , kB = Boltzmann’s con-
stant, j = 1, . . . , n. The energies U0,Uj ,W0,j , j > 0, should be imagined as generated by pair potentials

ϕ0, ϕj ,ϕ0,j short ranged, smooth, or with a singularity like a hard core1

forces has emerged from simulations and studies on nonequilibrium statistical mechanics
since the early 1980’s, [1–4]. It is interpreted as phase space contraction rate, as defined
by the divergence of the equations of motion which we write symbolically ẋ = f (x), i.e.
σ(x) = −∑

i ∂xi
f (x).

General thermostats acting on a mechanical system, on which also external non conser-
vative forces may act, will be modeled as described in Fig. 1 and illustrated in the caption,
[4, 5]:

To imply K̇j = 0 in the above model the multiplier αj has to be αj = − (Qj +U̇j )

3Nj kBTj
, where

Qj

def= − Ẋj · ∂Xj
W0,i (X0,Xj ) (1.1)

is naturally interpreted as the heat ceded per unit time to the thermostat Cj . The phase space
contraction rate, neglecting for simplicity O(N−1

j ), is computed from the equation in Fig. 1
to be

σ(X) =
∑

j

Qj − U̇j

kBTj

(1.2)

(each addend should be multiplied by the factor (1 − 2
3Nj

) if O(N−1
j ) is not neglected).

Of course σ(x) depends upon the metric used on phase space and on the density giving
the volume element: both are arbitrary and (1.2) yields the contraction rate for the Euclidean
metric and density 1: i.e. for the Liouville volume. Because of such ambiguity σ(x) cannot
have an immediate physical meaning. However its time average, and the fluctuations of its
finite time averages over long time intervals, have an intrinsic meaning, independent of the
choices of the metric and the density, [5], at least if the motions are “chaotic”, see below.

Some interesting concrete examples of the above systems are illustrated in Figs. 2 and 3.
In Fig. 2 α = E·ẋ

mẋ2 and this is an electric conduction model of N charged particles (N = 2
in the figure) in a constant electric field E and interacting with a lattice of obstacles (circles
in the figure); it is “autotermostatted” (because C0 and T1 coincide) in 2 dimensions. This
is a model that appeared since the early days (Drude, 1899, [7]) in a slightly different form

1Singularities of different type but care has to be exercised in formulating and by external potentials modeling
the containers walls and for simplicity the assumption of smoothness (possibly in presence of a hard core) is
made here. For the more general cases, like Lennard-Jones potentials, see [6].
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Fig. 2 A modern version of the
classical Drude’s model for
electric conductivity

Fig. 3 A model for thermal and
electric conduction

(i.e. in dimension 3 and with the thermostatting realized by replacing the −αẋ force with

the prescription that after collision with an obstacle velocity is rescaled to |ẋ| =
√

3
m
kBT .

The thermostat forces are a model of the effect of the interactions between the particle
(electron) and a background lattice (phonons). This model is remarkable because it is the
first nonequilibrium problem that has been treated with real mathematical attention and for
which the analog of Ohm’s law for electric conduction has been proved if N = 1, [8].

Another example is a model of thermal conduction, Fig. 3, in which N0 hard disks interact
by elastic collisions with each other and with other hard disks (N1 = N2 in number) in the
containers labeled by their temperatures T1, T2: the latter are subject to elastic collisions
between themselves and with the disks in the central container C0; the separation reflect
elastically the particles when their centers reach them, thus allowing interactions between
the thermostats and the main container particles. Interactions with the thermostats take place
only near the separating walls.

If one imagines that the upper and lower walls of the central container are identified
(realizing a periodic boundary condition) and that a constant field of intensity E acts in the
vertical direction then two forces conspire to keep it out of equilibrium, and the parameters
F = (T2 − T1,E) characterize their strength: matter and heat currents flow.

The case T1 = T2,E �= 0 has been studied in simulations to check that the thermostats are
“efficient”: i.e. that the simple interaction, via collisions taking place across the boundary,
is sufficient to allow the systems to reach a stationary state, [9].

Thermostat models similar to the above have been considered in the literature, [3, 10, 11].
A fundamental problem with the model in Fig. 1 is that it is not clear which detailed assump-
tions have to be made on the interactions to insure that almost all initial conditions evolve
staying in a bounded region in phase space so that they can be expected to determine a
stationary state. This can be called the “thermostat efficiency problem” and it is, for non-
equilibrium, the analogue of the Hamiltonian stability problem in equilibrium, [12]. The
experiment in [9] encourages the idea that the assumptions could be very general and fairly
simple. In [13] a model like the one in Fig. 3 was studied but the confinement difficulty
was avoided by requiring that also the total kinetic energy K0 in the central container was
constant thanks to an extra thermostatting force −α0Ẋ0 with a properly chosen α0.

The model in Fig. 3 without thermostatting forces to keep Kj , j > 0 constant, hence
with a purely Hamiltonian evolution, has been carefully studied in [14] which also gives the
clearest account on the so called “transient fluctuation theorem” improving and extending
its earlier formulation in [15], and obtains implicitly also a transient version of the result on
fluctuation patterns, analogous to the one derived earlier for steady states in [16].

In [14] there is also a careful analysis of the model in Fig. 3 with the aim of obtaining
results for stationary states: stationarity is made possible by taking the thermostats infinitely
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large stressing the (formidable) problems that one should encounter in attempting a rigorous
proof.

In this paper (and in all my preceding ones) I have chosen to consider only finite ther-
mostats with empirical thermostat forces and studied a few problems by introducing a single
assumption, the chaotic hypothesis.

2 Chaos

Microscopic motions are in all possible empirical senses “chaotic”. The paradigm of chaotic
motions are the hyperbolic transitive systems: these are smooth systems whose evolution
can be intuitively described by saying that each phase space point moves being seen by the
comoving neighboring points as a hyperbolic fixed point.

Another intuitive way to look at such systems is to say that the phase space points can be
coded into sequences ξ = (ξi)

∞
i=−∞ of symbols, say the digits 0,1,2, . . . , q < ∞, in such a

way that the dynamics becomes the trivial shift of the sequence ξ , and all sequences which
satisfy Mξi,ξi+1 ≡ 1 represent one phase space point, M being a “compatibility matrix” with
elements Mij = 0,1 which is transitive (i.e. Ms

ij > 0 for some s). There may be ambiguities,
i.e. different sequences may represent the same point, but this can happen on a zero volume
set of points only, in close analogy with the familiar ambiguity in the representation of
number by digits (where 0.9999 . . . and 1.0000 . . . are the same number).

It is natural, at least for some [11, 17, 18], to imagine that motions of complex systems,
like gases or liquids, are chaotic in the simplest sense (which is also the strongest) of be-
ing hyperbolic transitive on the attracting sets (also called Anosov systems). The chaotic
hypothesis, proposed in [11], see also [12], reflects this remark.

Chaotic hypothesis Attracting sets for mechanical systems are smooth surfaces on which
motion is smooth, hyperbolic and transitive.

This is an hypothesis that has to be considered in the same sense as the ergodic hypothesis
for equilibrium statistical mechanics, [19]. Hence it might be at first disturbing.

However disturbing assumptions are common in the literature and, nevertheless, are often
fruitful. I just mention the assumption of periodicity with equal period (“monocyclicity”) of
the motions of mechanical systems: it was employed in the derivation of the second law from
the action principle in Boltzmann, [20]: this assumption was considered also by Clausius,
Maxwell, Helmholtz and was the basis of the early works on the mechanical interpretation
of the second law, [21, 22]. At the time there must have been objections to such a bold as-
sumption and someone must have declared, as it was done a little later about its modification
into the ergodic hypothesis (and as it is done today about the chaotic hypothesis), that it is “a
strong assumption as the periodicity (or ergodicity) hypothesis raises the question of which
systems of practical interest are “periodic” (“ergodic”), since almost none of them is actually
such”, see [23]. Similar statements can be found in the literature, even in good papers.

Chaotic systems (in the above sense) admit a statistics (called SRB statistics, [24–26]),
i.e. a probability distribution μ on each attracting set which, by integration, gives the average
values of the observables G(x) on trajectories whose initial data x are randomly chosen, near
enough to an attracting set, with a distribution with some (arbitrary) density:

〈G〉 = lim
T →∞

1

T

T −1∑

j=0

G(Sjx) =
∫

G(y)μ(dy), with probability 1 (2.1)
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where x → Sx is a discretized time evolution map, obtained by timing observations on the
occurrence of some selected event. Or in the (unphysical, yet customary and interesting)
case of observations in continuous time

〈G〉 = lim
T →∞

1

T

∫ T

0
G(Stx) dt =

∫

G(y)μ(dy), with probability 1 (2.2)

where x → Stx denotes the evolution of the initial data x via the equations of motion, [27].
If motion is chaotic (i.e. hyperbolic, regular, transitive) the finite time averages

γ = 〈G〉τ = 1

τ

τ−1∑

j=0

G(Sjx) (2.3)

satisfy a large deviations law, i.e. fluctuations off the average 〈G〉 as large as τ itself are
controlled by a function ζ(γ ) convex and analytic in a (finite) interval (γ1, γ2), maximal
at 〈G〉. This means that the probability that γ ∈ [a, b] satisfies

Pτ (γ ∈ [a, b]) 	 eτ max[a,b] ζ(γ ), ∀a, b ∈ (γ1, γ2) (2.4)

and the interval (γ1, γ2) is non trivial if 〈G2〉 − 〈G〉2 > 0, [24, 28, 29]. If ζ(γ ) is quadratic
at its maximum (i.e. at 〈G〉) then this implies a central limit theorem for the fluctuations of√

τ 〈G〉τ , but (3.4) is a much stronger property.

Remarks

(1) The hypothesis holds also in equilibrium; if the system admits a dense trajectory in
phase space it implies the classical ergodic hypothesis.

(2) If the observable G has nonzero SRB-average it is convenient to consider instead the
observable G

〈G 〉 because it is dimensionless, just as in the case of 〈G〉 = 0 it is convenient

to consider the dimensionless observable G√
〈G2〉

.

(3) If the dynamics is reversible, i.e. there is a smooth, isometric, map I of phase space such
that I 2 = 1 and ISt = S−t I or in the discrete case IS = S−1I , then any time reversal
odd observable G, with non zero average and nonzero dispersion 〈G2〉 − 〈G〉2 > 0, is
such that the interval of (γ1, γ2) of large deviations for G

〈G〉 is at least (−1,1) provided
there is a dense orbit (which also implies existence of only one attracting set).

(4) The systems in the thermostats model of Sect. 1 are all reversible with I being the
ordinary time reversal, change in sign of velocity with positions unaltered, and the phase
space contraction σ(x) is odd under time reversal, see (1.2). Therefore if σ+ = 〈σ 〉 > 0
it follows that the observable

p′ = 1

τ

τ−1∑

j=0

σ(Sjx)

σ+
(2.5)

has domain of large deviations of the form (−g,g) and contains (−1,1).
(5) Since by (1.2) σ differs from ε(x) = ∑

j>0
Qj

kBTj
by the time derivative of an observable,

it follows that the finite or infinite time averages σ and of ε have, for large τ , the same
distribution. Therefore the same large deviations function ζ(p) controls the fluctuations
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of p′ above and of

p = 1

τ

τ−1∑

j=0

ε(Sjx)

σ+
, σ+ ≡ 〈σ 〉SRB = 〈ε〉SRB, (2.6)

and it has been shown, [11, 30] and in a mathematical form in [31], that under the
chaotic hypothesis and reversibility of motions on the attracting set, the function ζ(p)

has the symmetry property

ζ(−p) = ζ(p) − pσ+, for all p ∈ (−p,p) (2.7)

and p ≥ 1. This is the fluctuation theorem of [11] (it requires a proof and therefore
it should not be confused with several identities, see for instance [32], with which, for
reasons that I fail to understand, it has been often identified). The interest of the theorem
is that it is universal, model independent yielding a parameter free relation which deals
with a quantity which has the physical meaning of entropy production rate and therefore
has an independent macroscopic definition and is accessible to experiments.

(6) Equation (2.7) is closely related to the theorem in [14], from which it differs only be-
cause it deals with finite thermostats assuming the (strong) chaotic hypothesis, rather
than dealing with infinite thermostats and assuming (strong) ergodicity properties. In
spite of the latter work several paper have appeared in the literature trying to get rid of
the chaotic hypothesis without adding much (if anything) to the lucid discussion in [14]
about the necessity of suitable assumptions in order to allow extending a transient fluc-
tuation relation (which is an identity, requiring no assumption, on the full phase space,
[32]) to a stationary one (which deals with properties that hold on a subset of zero prob-
ability with respect to the initial data sampling).

(7) The fluctuation theorem has several extensions including a remarkable, parameter free
relation that concerns the relative probability of patterns of evolution of an observable
and their reversed patterns, [12, 33, 34], related to the Onsager–Machlup fluctuations
theory, which keeps being rediscovered in various forms and variations in the literature.

3 Onsager Reciprocity

Another consequence of the fluctuation theorem are the Onsager reciprocity and Green–
Kubo formulae for the infinitesimal deviations from equilibrium, [13]; the latter can be in-
dependently derived (in a simpler way) from the chaotic hypothesis and time reversal sym-
metry assumed only at equilibrium, [8], as it will be shown in the concluding comments, or
as discussed from a somewhat different viewpoint in [35].

Here the aim is to show that the Green–Kubo formulae, hence Onsager’s reciprocity, can
be regarded as the version at zero forcing of the fluctuation theorem for stationary states.

In the case in which T1 = T2 = · · · = T and E = 0 the system is in thermal equi-
librium and its state is characterized by a probability distribution μ0 which invari-
ant under the time evolution x → Stx generated by the equations in Fig. 1. Setting
x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn) it is remarkable that the distribution can be explicitly
found, [3], as

μ0(dx) = const e−β
(
U0(X0)+∑

j>0
(
Uj (Xj )+W(X0,Xj )

)+K0(Ẋ0)
)

×
(∏

j>0

δ

(

Kj − 3

2
NjT

))(∏

j≥0

dẊj dXj

)

(3.1)
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where β = 1
kBT

(neglecting O(N−1
j ) for simplicity). Calling the “unperturbed” energy

H0(x) = K0(Ẋ0) + ∑
j≥0 Uj(Xj ) + ∑

j>0 Wj(X0,Xj )
2 and δ̃(Kj (x), Tj ) = δ(Kj (Ẋj ) −

3
2NjTj )), (3.1), written more compactly, is

μ0(dx) = const e−βH0(x)
∏

j>0

δ̃(Kj (x), T ) dx (3.2)

which is a distribution in an ensemble which, for the system in C0, is equivalent to the
canonical one (for N0,L0 → ∞, N0/L

3
0 = const if L0 is the side of the container).

We now want to compare the average values of various currents that are switched on
when E, the external forces, become non zero and the temperatures of the thermostats be-
come different: E �= 0 and Tj = T + εj . More precisely we look for the relations between
infinitesimal forcing actions and the corresponding currents, i.e. the susceptibility coeffi-
cients.

The currents are related to the average values of the derivatives of the entropy produc-
tion with respect to the forces (material currents) or to the temperature inequalities (heat
currents). However the arbitrariness inherent in the phase space contraction generates in-
teresting questions: for instance in the model in Fig. 1 the phase space contraction with
respect to the Liouville volume is independent of the external forces E, see (1.1), (1.2), so
that ∂Eσ ≡ 0, while it is obvious that the external forces generate material currents, being
non conservative.

On the other hand even in equilibrium a thermostatted system exchanges heat with the
thermostats: hence there is a production of entropy which has a zero average but which is
not zero and equal to

∑
j

Qj

kBT
.

It is therefore interesting to see, first, why in equilibrium (i.e. when the thermostats
have all the same temperature and no external forces act) the SRB-average of

∑
j

Qj

kBT
van-

ishes, [36]. This is the case because the latter quantity is the derivative of βH0(x). In fact the
derivative βH0 is β times the work done on the system by the forces −αẊj which equals
∑

j>0
Qj −U̇j

kBT
. This means that σ(x) − βḢ0(x) ≡ 0 and therefore

∑

j>0

Qj

kBT
= βḢ0(x) +

∑

j>0

U̇j (x)

kBT
(3.3)

and the r.h.s. is a time derivative, hence it has 0 time average.
When the system is out of equilibrium (i.e. Tj �≡ T and E �= 0) the heat currents flowing

into the thermostats divided by the temperature are generated by the entropy production rate
jk(x) = ∂Tk

σ (x), while the material currents through the system are defined by minus the
derivatives with respect to the acting forces of the work per unit time that they do, given by
the corresponding derivatives of Ḣ0. Thus given arbitrarily β the quantity

σ(x) = σ(x) − βḢ0(x) (3.4)

2The kinetic energy of the thermostats is an additive constant and therefore is not explicitly
written.
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generates all currents up to a proportionality factor (here β is arbitrary). It can be computed
as

σ(x) =
∑

j>0

Qj − U̇j

kBTj

− βE · Ẋ0 − β
∑

j>0

(Qj − U̇j ) (3.5)

because, by the equations in Fig. 1, Ḣ0 = E · Ẋ0 − ∑
j>0 αj Ẋ2

j and therefore Ḣ0 = E · Ẋ0 +
∑

j>0(Qj − U̇j ), see (1.1).

Hence, discarding the time derivatives terms involving the U̇j (parameters independent),
the currents (at infinitesimal forcing) can be generated by the function

σ0(x) =
∑

j>0

Qj

(
1

kBTj

− 1

kBT

)

− E · Ẋ0
1

kBT
(3.6)

The generating function σ0 is odd under time reversal and vanishes at equilibrium
Tj = Ti , E = 0 if T is chosen T = Tj ; its derivatives with respect to the forcing parame-
ters Tj ,Ek generate the heat and material currents and, at the same, time σ0(x) differs from
the phase space contraction by a time derivative.

Note that σ is also the phase space contraction of the volume in phase space, provided
the latter is measured by the distribution

μ(dx) = const e−βH0(x)
∏

j>0

δ̃(Kj (x), Tj ) dx (3.7)

In [37] a reversible system (like the model in Fig. 1), has been considered in which
the generating function for the currents σ0 vanishes for vanishing “thermodynamic forces”
F = (T1 − T , . . . , Tn − T ,E1, . . . ,Eq) = 0 and satisfies the fluctuation relation or, better, its
extension in [37, (14)], has been considered.

And it has been shown, [37], that the products of the currents, generated by the thermo-
dynamic forces, times β = 1

kBT
, and defined by

jm = ∂Fr σ (x) ≡ ∂Fr σ0(x) (3.8)

are such that their averages Jm = 〈jm〉SRB have susceptibilities Lmp = ∂FmJp|F=0 which
satisfy

Lmp = 1

2

∫ ∞

−∞
dt

(〈jm(St ·)jp(·)〉SRB − 〈jm〉SRB〈jp〉SRB

)∣
∣
F=0 (3.9)

If the parameter β is properly chosen as mentioned above, i.e. β = 1
kBT

(and only if so
chosen), σ0 will vanish when F = 0. Since σ and σ0 differ by a time derivative they can
be interchangeably used in the theory of the SRB distribution and therefore σ0 satisfies the
fluctuation theorem (because σ does); the assumptions in the derivation in [37] apply and
therefore (3.9) yields Onsager’s reciprocity Lmp = Lpm, and Green–Kubo formula.

4 Work and Entropy Theorems. Comments

(1) This extends considerably the results in [13, 37] removing the restriction on the phase
space contraction to be the generating function of the currents. The key is that the phase
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space contraction is only defined up to a time derivative of an observable and the gen-
erating function of the currents coincides with the phase space contraction only if the
observable is properly chosen.

(2) it is worth stressing that the extension of the fluctuation theorem needed to derive from
it Onsager reciprocity is an important one: in [33] it was further extended to show (con-
ditional reversibility theorem) that there is a simple relation between the probability
that an observable F(x), even or odd under time reversal (for simplicity), follows in a
time interval −τ, τ a “pattern” F(Stx) = ϕ(t) or the “reversed pattern” F(Stx) = ϕ(−t)

provided the entropy production rate is fixed, [33]. A statement that can be colorfully
quoted as . . . relative probabilities of patterns observed in a time interval of size τ and in
presence of an average entropy production p are the same as those of the corresponding
anti-patterns in presence of the opposite average entropy production rate, [34, p. 476],
or also [34, p. 476], or . . . it “suffices” to change the sign of the entropy production to
reverse the arrow of time, or also . . . a waterfall will go up, as likely as we see it going
down, in a world in which for some reason, or by the deed of a Daemon, the entropy
creation rate has changed sign during a long enough time, [12, p. 288]. We can also say
that the motion on an attractor is reversible, even in the presence of dissipation, once the
dissipation is fixed. Again variations of this property keep being rediscovered, see for
instance [38].

(3) In the case of systems in contact with a single thermostat but in a stationary nonequi-
librium because of the action of external forces the above analysis has also interesting

consequences. The phase space contraction can be written as σ(x) = ∑
j>0

Qj −U̇j

kBT
, as in

(1.2), or by adding to it a time derivative as σ(x) = σ(x) + βḢ0(x) which in this case

is simply σ(x) = E(X0)·Ẋ0
kBT

= Ẇ
kBT

. Therefore the fluctuation theorem, as pointed out by
Bonetto: see [12, (9.10.4)], yields the following “work theorem”

〈e−βwτ 〉SRB = 1, w
def= 1

τ

∫ τ

0
Ẇ (Stx) dt (4.1)

in the sense that the logarithm of the l.h.s. divided by τ tends to 0 as τ → ∞. More
generally the identity up to a time derivative of σ , σ ,

∑
j>0

Qj

kBTj
and σ0 = ∑

j>0(
Qj

kBTj
−

βQj) − βE · Ẋ0, see (3.3)–(3.6), implies that, in the same sense as in (4.1), the finite
time average P of any of the latter four quantities, denoted σ̃ , over a time τ will satisfy

〈e−Pτ 〉SRB = 1, P
def= 1

τ

∫ τ

0
σ̃ (Stx) (4.2)

which can be called an “entropy theorem”: not only remarkable because it involves
quantities that can be measured in experiments, [4], but also because here β can be taken
arbitrary, so that (4.2) is an infinite number of relations. Actually if p = P/〈σ0〉SRB the
large deviations of p satisfy the fluctuation theorem symmetry (2.7). Note however that
all such relations are special cases of the theorem in [16].

(4) A further alternative method to derive the Green–Kubo relations is in [39]. It will be
illustrated, for completeness, in the simple case of a system interacting with only one
thermostat and subject to several nonconservative external forces that will be propor-
tional to parameters E = (E1, . . . ,Eq). Under the chaotic hypothesis the SRB average

of the currents Jm = ∫
μSRB(dx)jm(x), with jm(x)

def= ∂Emσ(x) in presence of thermo-
dynamic forces E, can be computed as the limit Jm = limt→∞ μ0(jm(SE

t x)), if SE
t is the
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map such that x → SE
t x solves the equations of motion in presence of forcing forces

with parameters E, and μ0 is the equilibrium distribution (3.1), [8, 39]. Therefore

Jm = lim
t→∞ μ0(jm(SE

t x)) =
∫ +∞

0
dt

d

dt

∫

μ0(dx)Jm(SE
t x)

=
∫ +∞

0
dt

d

dt

∫
μ0(dx)

μ0(dSE
t x)

μ0(dSE
t x)jm(SE

t x)

=
∫ +∞

0
dt

d

dt

∫
μ0(dSE−t x)

μ0(dx)
μ0(dx)jm(x) (4.3)

but by the comment preceding (3.7) (considered with Tj ≡ T )

d

dt

μ0(dSE−t x)

μ0(dx)
= σ(SE

−t x) (4.4)

so that the chain of equalities in (4.3) yields

Jm =
∫ ∞

0
dt

∫

σ(SE
−t x)jm(x)μ0(dx) (4.5)

And taking into account that σ(x) ≡ 0, if E = 0, and jm(x) = ∂Emσ(x)

Lpm = ∂EpJm|E=0 =
∫ ∞

0
dt

(∫

∂Epσ (SE
−t x)∂Emσ(x)μ0(dx)

)∣
∣
∣
∣
E=0

= 1

2

∫ ∞

−∞
dt

(∫

∂Epσ (SE
−t x)∂Emσ(x)μ0(dx)

)∣
∣
∣
∣
E

= 0 = Lmp (4.6)

by time reversal invariance of the equilibrium distribution μ0, which is the Green–Kubo
formula.
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